CNC MILLING: PANTOGRAPH DEMONSTRATION
Laura C. Hewitt, Mohammad M. N. Esfahani, Mark D. Tarn, Alexander Iles and Nicole Pamme
University of Hull, Faculty of Science and Engineering, UK

THE ACTIVITY

Many different microfabrication techniques are used in the manufacture of microfluidic devices. The CNC machine is used for precise 3D milling and drilling of glass, metals and plastics. To explain the input of a computer drawn design into a machine and the output of the same design milled into a piece of material, a pantograph activity has been developed.

AIM
To explain microfabrication techniques to school children and the general public by:
• producing a safe, interactive experiment to demonstrate CNC milling;
• highlighting examples of methods used in microfluidic device fabrication.

THE DEVICE

Fig. 1: (a) CNC machine cutting a piece of metal. (b) The pantograph fixed to a base plate is used to mimic the transfer of a chosen input design to an output on a scratch card.

HOW IT WORKS

Fig. 2: (a) A pantograph (Sketch-a-Graph, purchased from Amazon) was secured to a base plate with a weight and a pin for ‘milling’. (b) A design is chosen and scratch art paper (Baker Ross Scratch Art Doodle Sheets) is secured in place with Blue Tac. (c) The chosen channel design is traced. (d) Results are observed.

Additional resources for activity to increase understanding and engagement:

USE OF CNC MILLING IN DEVICES

At the University of Hull computernumerically controlled (CNC) milling is used for cutting channels, holes and features into a range of materials such as aluminium, plastics, PTFE and glass. CNC milled aluminium pieces serve as templates for injection moulding or hot embossing of polymers such as PMMA, PC or COC. CNC milled PTFE pieces serve as moulds for soft polymers such as PDMS. We also mill directly into glass or polymer pieces to cut out chambers and holes or to mill channels and cavities. With our machine, cutting tools vary in size from 0.1 mm to 6 mm in diameter.

Figure 3: (a) Photograph of the CNC milling machine in our Lab-on-a-Chip fabrication facility, with enlarged pictures of cutting tools and work pieces. (b) Various items fabricated using our CNC machine.

Figure 4: The CNC machine allows milling in a range of materials including (a) aluminium, (b) PTFE (teflon), (c) rigid polymers such as sheets of PMMA, and (d) glass.

KEY REFERENCES