Making 3D Structures From Planes

Shoji Takeuchi Lab.
Institution of Industrial Science, The University of Tokyo

Origami Engineering

Origami is a Japanese traditional art folding a sheet of paper into a 3D figure. Moreover, *origami* technique is used in various industry fields from everyday items to space exploration.

Cell Origami

A human body is consisted of trillions of cells. We have dreamed of building an artificial body by assembling cells, but it was difficult to build 3D structures using cells cultured on plane dishes. Our “cell *origami*” technique enables this by taking advantage of the traction force of cells.

Origami is a Japanese traditional art folding a sheet of paper into a 3D figure.

Cell Traction Force (CTF)

Cells are usually hard to manipulate because they are small, soft and attach to dishes firmly. We succeeded to move and array cells by using cell-sized movable microplates like “flying carpets.”

Flying carpets for cells

Cells bridge gaps between microplates. Microplates are folded by cell traction force. Various 3D structures are formed.

Culture cells on cell-sized microplates

Cells bridge gaps between microplates

Microplates are folded by cell traction force

Various 3D structures are formed

Cell Origami

Culture cells on cell-sized microplates. Cells bridge gaps between microplates. Microplates are folded by cell traction force. Various 3D structures are formed.

Flying carpets for cells

Cells are usually hard to manipulate because they are small, soft and attach to dishes firmly. We succeeded to move and array cells by using cell-sized movable microplates like “flying carpets.”

Self-folding by CTF

Cells are usually hard to manipulate because they are small, soft and attach to dishes firmly. We succeeded to move and array cells by using cell-sized movable microplates like “flying carpets.”

Cell Origami

Culture cells on cell-sized microplates. Cells bridge gaps between microplates. Microplates are folded by cell traction force. Various 3D structures are formed.

Flying carpets for cells

Cells are usually hard to manipulate because they are small, soft and attach to dishes firmly. We succeeded to move and array cells by using cell-sized movable microplates like “flying carpets.”